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Abstract

Systems based on BaTiO3z with aliovalent substitu-
tions of titanium by niobium, tantalum, molybdenum
and tungsten have been investigated. The effect of
substitution on the microstructure and electro-
physical properties of ceramic is shown. Novel com-
pounds with perovskite structure have been
synthesized. © 1999 Elsevier Science Limited. All
rights reserved
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1 Introduction

Posistor properties, which are coupled with the
simultaneous presence of ferroelectric and semi-
conductive properties, arise on aliovalent substitu-
tion in one of the cation sublattices. It was shown
earlier that semiconductive properties arise in fer-
roelectric barium titanate on the aliovalent sub-
stitution of barium ions by rare-earth ions as a
result of the formation of the solid solution
(Ba2 Ln*")(Ti3"Til" )O; between barium meta-
titanate (BaTiO3;) and rare-earth titanates
(LnTiO3).! Semiconductive properties can also arise
from the aliovalent substitution of titanium by nio-
bium, tantalum, antimony, bismuth, tungsten,
molybdenum, rhenium.?? The aliovalent substitu-
tion of titanium in barium metatitanate can be
deemed to lead to the formation of solid solutions
such as Ba(Ti}},Ti}" M3},)O3, where M=Nb, Ta,
Mo, W. However, there are no data in literature on
individual phases, whose formation gives rise to
semiconductive properties, and no data on the pha-
ses that are formed at grain boundary on oxidation.
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Therefore, the aim of the study was to investigate
the phases that appear on the aliovalent substitu-
tion of titanium and impart semiconductive prop-
erties to barium metatitanate and the phases that
appear during the oxidation of solid solutions such
as Ba(Ti}/,Ti{" M3/))Os, where M=Nb, Ta, Mo,
W.

2 Experimental

All the samples for this investigation were prepared
by a conventional solid-state reaction technique.
Extra-pure-grade BaCOs;, TiO,, SiO, and reagent
grade Nb,Os, Ta,0s, MoO3, WOs, titanium metal
were used as starting reagents. The samples were
sintered in air or in CO/CO,—nitrogen mixture
(extra pure) at 600-1400°C. XRD analysis was
carried out on a DRON-3M diffractometer with
CuK, radiation. Ohmic contacts were produced by
burning aluminum paste applied to posistor sur-
faces. The granular structure of as-fired surfaces
was examined using a JCXA Superprobe 733 X-ray
microanalyzer.

3 Results and Discussion

XRD analysis of Ba(Ti}},Ti{* M}},)O5 systems
(where M=Nb, Ta, Mo, W) showed that at
x>0-01 the cubic and tetragonal phases are present
in the ceramic at one time. When the concentration
of niobium, tantalum, molybdenum and tungsten
is increased above x=0-05, 0-04, 0-07 and 0-09,
respectively, a transition from the mixture of tet-
ragonal and cubic phases to the cubic phase takes
place.

The plot of X-ray density against the degree of
the aliovalent substitution of titanium by groups V
and VI elements has a minimum at x=0-001-0-003
(Fig. 1), which correlates with the maximum of the
average grain size of barium metatitanate ceramic
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with aliovalent substitutions of titanium by groups
V and VI elements (Fig. 2).

The plots of ceramic resistivity against niobium,
tantalum, molybdenum and tungsten concentra-
tion pass through a minimum (Fig. 3). The
decrease in resistivity in the low impurity con-
centration region (x=0...0-002) is due to an
increase in the number of charge carriers; in this
case, substitution solid solutions are formed:?

Ba((Ti*"e™)xTil", Me’")0;

1
= Ba(Ti}'Ti{ ", Me>") 03 0

The increase in resistance at concentrations above
x=0-002 is due to the formation of subtraction
substitution solid solutions,> which lead to a
decrease in the number of charge carriers:
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Fig. 1. X-ray density (P,) of the Ba(Ti;_ M )O3 ceramic as a
function of the degree of aliovalent substitution: M =Nb(Il);
Ta([); Mo(W¥); W(A).
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Fig. 2. Average grain size of the Ba(Ti;_,M,)O; ceramic as a
function of the degree of aliovalent substitution: M =Nb(H);
Ta(O); Mo(V¥); W(A).

(Bay_y/2 Oy2)(Tij—xMe) )03,

(2)
where O = barium vacancies

By examining EPR spectra it was found that a
large amount of Ti** ions is present in all solid
solutions of the Ba(Ti;.\M,;>*,)O; type (where
M =Nb, Ta, Mo, W). It was found that the group
VI elements incorporate into perovskite structure
in the oxidation state +5 (Fig. 4).

Ba(Ti}},Tij" M}},)O; solid solutions (where
M=Nb, Ta, Mo, W) may be regarded as the
result of interaction between compounds with per-
ovskite structure: between barium metatitanate
(BaTiO3), where titanium is in the tetravalent
state, and Ba(Ti?ZMfZ)O3—type compound with
trivalent titanium. To ascertain the conditions of

existence of individual Ba(TifEMf?&)O3 compounds
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Fig. 3. Resistivity of the Ba(Ti;.,M )O3 ceramic as a function
of the degree of aliovalent substitution: M =Nb(H); Ta((J);
Mo(W); W(A); T=20°C.
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Fig. 4. EPR spectra of the Ba(Tig.999M0g.001)O3 ceramic;
T=20°C.
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with perovskite structure (where M=V, As, Nb,
Ta, Mo, W), steric parameters for complicated
perovskli‘te compounds A(B,/,B,,"...B, )0,
(where > x; = 1) were calculated according to Ref. 4.
i=1

The calculation of steric parameters for individual
Ba(Ti?ﬁMfﬁ)O3 compounds shows that per-
ovskite structure can only exist when M =Nb, Ta,
Mo, W, whereas steric requirements are not met
when M =V, As. The results of calculations are in
good agreement with experimental data, which
indicate that semiconductive properties arise in
barium metatitanate only when the formation of
Ba(Ti?ZMfE)O3 perovskites (where M =Nb, Ta,
Mo, W) is possible. To corroborate the results of
calculations, we carried out synthesis of individual
Ba(Ti?szf/Z)O3 compounds in a CO/CO, redu-
cing atmosphere. Niobium, tantalum, molybde-
num and tungsten oxides are reduced in a CO/CO,
atmosphere at temperatures above ~1300, 1500,
600 and 700°C, respectively.>  Therefore,
Ba(Tif?&Mf/*z)O3 perovskites (where M =Nb, Ta,
Mo, W) can be only synthesized at temperatures
below 1300°C (for Nb-containing compounds),
1500°C (for Ta-containing compounds), 600°C (for
Mo-containing compounds) and 700°C (for W—
containing compounds).

Investigations showed that at about 1200°C, the
X-ray diagrams contain only reflections which
appertain to the compounds Ba(Ti;,Nb; ;)O3 and
Ba(Ti; ,Ta;»)O3 with perovskite structure and cubic
crystal system; it was found that the compound
Ba(Ti?szofﬁ)O_g has a cubic crystal system. Calcu-
lated lattice parameters are listed in Table 1.

To elucidate the trivalent titanium oxide forma-
tion mechanism, two possible cases were con-
sidered:

1. Titanium oxide (TiO,) is partially reduced,
which is accompanied by a weight loss due to
oxygen evolution:®

X

¥Tit 03 = 5

Ti3H 0% + 202 T )

2. Partial reduction of barium metatitanate in
complex titanium oxides containin barium

Table 1. Lattice parameters of compounds with perovskite
structure and cubic crystal system

Compound Lattice Molecular  py(g cm™3)
parameters weight
(pm)
Ba(Ti; 2Nb;»)03 405-1 255-74 6-39
Ba(Til/zTal/z)O3 406-3 29976 7-42
Ba(Ti; ,Mo,5)03 410-3 257-26 6-19

metatitanate and oxide of groups V and VI
elements, which leads to the formation of tri-
valent titanium oxide (or Magneli phases,
Tin02n—1):7

. 1. 6 . 1
2BaTiO; — §T1203 + ﬁBazT104 + ZOZ T (4)

The entropies of reduction reactions (3,4) are posi-
tive (AS > 0) since these reactions are accompanied
by oxygen evolution. The enthalpies of titanium
oxide reduction reaction (3) and barium metatita-
nate reduction reaction (4) are 176+12 and
295+30kJmol~! respectively,® therefore under
equal conditions the reduction of titanium oxideis
more probable than that of barium metatitanate.
The formation of discrete Magneli phases is only
possible at a high degree of reduction (x>0-0278),°
which is not the case for the systems under investi-
gation. Thus, the formation of compounds with
trivalent titanium involves most probably the
reduction of titanium oxide.

The formation of Ba(Ti?EM?Z}O3—type per-
ovskite may be represented by the reaction:

xBaCO; + %Ti203 4 §M2o5
— xBa(Ti} ,M}},)05 + xCO, 1

The phase Ba(Tij},Mj};)O, which is unstable in

oxidizing atmosphere, is stabilized when it is dis-
solved in barium titanate according to the reaction:

(1 — x)BaTiO; + xBaTi} M} ,05

6
— Ba(Tiij2 +Ti‘1‘fo§/+2)03 ©)

The change to high-resistance ceramic when
increasing the groups V and VI elements content
can be attributed to vacancy formation in cation
lattices:

1. Formation of barium vacancies, which com-

pensate M(V) metal ion excess charge:

1 g)BaCO3 + (1 — x)TiO; + %M205

(
. X
- (Ba%ixﬁ Dx/z)(Tl?txMi+)O3 + (1 - E)COZ T
(7)

This may be represented as follows:®
BaO+ M205—>Ba}3a + 2MTi. + 600 + VBa”

2. Formation of titanium vacancies, which com-
pensate M (V) metal ion excess charge:
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BaCOs + (1 — SX)TIOQ + 2XM,O5

8
— Ba(Ti‘ffo 0,M;1)03 + CO;, 1 ®)

This may be represented as follows:?
5BaO + 2M205_>5B3Ba + 4MTi. + 1500 + VTi

The investigations of the ceramic microstructure
show a change in grain growth mechanism and
corroborate the fact that the character of solid
solutions changes as a function of the degree of
aliovalent substitution. Examination of EPR spec-
tra of strongly doped specimens shows that barium
vacancies are mainly formed. This allows one to
conclude that at high degrees of the aliovalent
substitution of titanium by groups V and VI ele-
ments, conduction electrons are compensated by
barium vacancies [eqn (7)], leading to an increase
in resistance.

XRD analyses showed that the oxidation of
Ba(Ti},M}},)O5 compounds (where M=Nb, Ta)
may be represented by the following reaction:

nn

. 1
Ba(Ti},M} /)05 + g 0,

49 . 1 1 .
— ﬁ BaTiO; + E Ba;M¢Oao, + ﬁ BagT117049
)

XRD analyses showed that the oxidation of the
Ba(TifﬁMfﬁ)O3 compounds (where M =Mo, W)
to lead to the formation of the phases BaMO, and
BaTiO;, which may be represented by the reaction:

: 1 1 1
Ba(Ti} ,M} /)05 + ;02 = 5 BaTiO; + 5 BaMO,
(10)

4 Conclusion

Thus, as a result of the investigations carried out it
was found that in the case of the aliovalent sub-
stitution of titanium by groups V (niobium, tanta-
lum) and VI (molybdenum, tungsten) elements
semiconductive properties arise; semiconducting

barium metatitanate with the partial substitution of
titanium by molybdenum has been obtained for the
first time. It was found that the groups V and VI
elements incorporate into the solid solution lattice in
the oxidation state +5 and that semiconductive
properties of barium titanate arise from the forma-
tion of a solid solution between barium metatitanate

(BaTiO;) and Ba(Ti},M7},)O3—type compound.
Novel compounds, Ba(Ti?szbl 12)0; and (Ba(Tiy,

»**Ta;2)03), with perovskite structure and cubic
lattice with the parameters a =405-1 and 406-3 pm,
respectively, have been synthesized; there are
formed in barium metatitanate on the aliovalent
substitution of titanium by group V elements.

It was found that when the solid solution
Ba(Ti{", Ti>*M>%)0; is oxidized, barium metatita-
nate and phases such as Ba;MgO,,, BagTi;7049
(M =Nb, Ta) or BaMO,4 (M =Mo, W) are formed at
grain boundaries, leading to the appearance of a
dielectric interlayer at grain boundaries.
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